Implemantasi K-Means Clustering untuk Pengelompokan Analisis Rasio Profitabilitas dalam Working Capital
Article Sidebar
Published:
May 30, 2016
Dimensions
Altmetrics
Statistics
Read Counter : 217
Download : 54
Main Article Content
Abstract
Rasio profitabilitas merupakan rasio untuk mengetahui kemampuan perusahaan dalam menghasilkan laba selama periode tertentu dan juga memberikan gambaran tentang tingkat efektifitas manajemen perusahaan dalam melaksanakan kegiatan operasinya. Rasio profitabilitas diperoleh dari laporan keuangan tahunan perusahaan dengan melakukan perhitungan dari data penjualan yang terdapat di dalam laporan tahunan. Masalahnya bagaimana mengelompokkan emiten-emiten yang punya kemiripan dalam rasio profitabilitas.. Dalam penelitian ini akan dibangun sistem berbasis desktop dengan menerapkan metode k-means clustering. Sistem akan mengelompokkan rasio profitabilitas semua perusahaan pada sektor pertambangan dan sektor industri barang konsumsi dalam 1 tahun. Hasilnya berupa cluster dari perusahaan mana yang memiliki kesamaan paling mirip pada rasio profitabilitasnya, hasil cluster juga disajikan dalam bentuk diagram scatter. Pada penelitian ini dilakukan uji coba terhadap centroid 2 hingga centroid 5. Setelah dilakukan uji coba terhadap jumlah centroidnya, dapat ditarik kesimpulan bahwa semakin banyak jumlah centroid dalam setiap proses clustering, maka makin spesifik kelompok cluster yang dihasilkan. Dengan demikian pengambilan kesimpulan kesamaan dalam kelompok cluster makin mudah.
Article Details
How to Cite
Kristanto, N. H., Christopher, A., & Budi, H. (2016). Implemantasi K-Means Clustering untuk Pengelompokan Analisis Rasio Profitabilitas dalam Working Capital. Jurnal Informatika Dan Sistem Informasi, 2(1), 9–15. Retrieved from https://journal.uc.ac.id/index.php/JUISI/article/view/111
Section
Articles
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
[1] Alghamdi, H. M., Nor Shahriza. (2014). Improved Text Clustering using K-Mean Bayesian Vectoriser. Journal of Information and Knowledge Management, Vol 13, No 3, 1-10.
[2] Ali El-Sappagh, S. H., Ahmed Hendawi, M. A., & El Bastawissy, H. A. (2011). A Proposed Model for Data Warehouse ETL Processes. Journal of King Saud University - Computer and Information Sciences, 91-104
[3] Bajkowski, J. (2010). Financial Ratio Analysis:Putting the Numbers to Work. The American Association of Individual Investors, 3-7.
[4] Bunnak, P., Sotarat Thammaboosadee, Supaporn Kiattisin. (2015). Applying Data Mining Techniques and Extended RFM Model in Customer Loyalty Measurement. Journal of Advances in Information Technology. Vol. 6, No. 4, November, 238 – 242.
[5] Santoso, H. B., Albertus Joko Santoso, Eduard Rusdianto. (2013). Hybrid Clustering Method for Stock Price and Commodity Price. International Journal of Science and Advanced Technology. Vol. 3, No. 7, July, 21- 29.
[6] Shi, W., Weihua Zeng. (2013). Genetic K-Means Clustering Approach for Mapping Human Vulnerability to Chemical Hazards in the Industrialized City: A Case Study of Shanghai, China. International Journal of Environmental Research and Public Health. Vol. 10, 2578 – 2595.
[2] Ali El-Sappagh, S. H., Ahmed Hendawi, M. A., & El Bastawissy, H. A. (2011). A Proposed Model for Data Warehouse ETL Processes. Journal of King Saud University - Computer and Information Sciences, 91-104
[3] Bajkowski, J. (2010). Financial Ratio Analysis:Putting the Numbers to Work. The American Association of Individual Investors, 3-7.
[4] Bunnak, P., Sotarat Thammaboosadee, Supaporn Kiattisin. (2015). Applying Data Mining Techniques and Extended RFM Model in Customer Loyalty Measurement. Journal of Advances in Information Technology. Vol. 6, No. 4, November, 238 – 242.
[5] Santoso, H. B., Albertus Joko Santoso, Eduard Rusdianto. (2013). Hybrid Clustering Method for Stock Price and Commodity Price. International Journal of Science and Advanced Technology. Vol. 3, No. 7, July, 21- 29.
[6] Shi, W., Weihua Zeng. (2013). Genetic K-Means Clustering Approach for Mapping Human Vulnerability to Chemical Hazards in the Industrialized City: A Case Study of Shanghai, China. International Journal of Environmental Research and Public Health. Vol. 10, 2578 – 2595.