Klasifikasi Sentimen Komentar Politik dari Facebook Page Menggunakan Naive Bayes

Antonius Rachmat C, Yuan Lukito

Abstract


Seiring maraknya situs media sosial yang digunakan sebagai sarana kampanye politik online maka makin banyak pula daukungan kampanye dari dunia maya melalui berbagai cara.  Cara kampanye yang digunakan para politisi diantaranya adalah melalui Twitter hashtag, petisi di Facebook, atau pembuatan Facebook Page di mana komentarnya dapat di-like/disline oleh para pendukungnya.  Permasalahan yang dibahas pada tulisan ini adalah belum banyaknya sistem yang dapat mengklasifikasikan pro kontra dari komentar-komentar yang terdapat pada Facebook Page.  Pada tulisan ini akan dibahas penggunaan metode Naive Bayes untuk melakukan klasifikasi sentimen positif atau negatif terhadap komentar dari status kampanye politik dari Facebook Page.  Studi kasus yang digunakan pada penelitian ini adalah status dan komentar terhadap Facebok Page calon presiden Republik Indonesia pada Pemilu tahun 2014.  Tahapan penelitian dilakukan dengan pengumpulan data 68 status (3400 komentar) selama masa kampanye, dengan kegiatan preprosesing tokenisasi, stemming, pembobotan token, kemudian dilanjutkan klasifikasi, dan pengujian menggunakan confusion matrix.  Dari hasil implementasi dan pengujian, metode Naive Bayes memiliki tingkat akurasi klasifikasi sentimen mencapai lebih dari 83%.

Full Text:

PDF

References


F. Amirullah, S. Komp and Y. Nurhadryani, "Campaign 2 . 0 : An Analyze of the Utilization Social," 2013 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2013.

D. A. Ramadhan, Y. Nurhadryani and I. Hermadi, "Campaign 2.0: Analysis of social media utilization in 2014 Jakarta legislative election," 2014 International Conference on Advanced Computer Science and Information System, 2014.

A. Rachmat C. and Y. Lukito, "Implementasi Crowdsourced Labelling Berbasis Web," Ultima InfoSys, vol. 6, no. 2, 2015.

C. Troussas, M. Virvou, K. J. Espinosa, K. Llaguno and J. Caro, "Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning," IISA 2013, 2013.

S. M. Weiss, N. Indurkhya, T. Zhang and F. Damerau , Text mining: Predictive Methods for Analyzing Unstructured Information, New York: Springer, 2005.

A. Akilan, "Text mining: Challenges and future directions," 2015 2Nd International Conference, 2015.

C. D. Manning, P. Raghavan and H. Schütze, Introduction to information retrieval, New York: Cambridge University Press, 2008.

K. V. Ghag and K. Shah, "Comparative analysis of effect of stopwords removal on sentiment," 2015 International Conference on Computer, Communication and Control (IC4), 2015.

G. Patil, V. Galande, V. Kekan and K. Dange, "Sentiment Analysis Using Support Vector Machine," International Journal of Innovative Research in Computer and Communication Engineering, vol. 2, no. 1, pp. 2607-2612, 2014.

B. Liu, Sentiment analysis: mining opinions, sentiments, and emotions, New York: Cambridge University Press, 2015.

J. Han, M. Kamber and J. Pei, Classification: basic concepts. In Data mining Concepts and techniques, Amsterdam: Elsevier, 2012.

H. Hamilton, "www2.cs.uregina.ca," Computer Science Uregina, 2009. [Online]. Available: http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion_matrix /confusion_matrix.html. [Accessed 4 February 2016].

B. Pang, L. Lee and S. Vaithyanathan, "Thumbs up?: sentiment classification using machine learning techniques," Proceedings of the ACL-02 conference on Empirical methods in natural language processing - EMNLP '02, vol. 10, pp. 79-86, 2002.

N. Zainuddin and A. Selamat, "Sentiment analysis using Support Vector Machine," 2014 International Conference on Computer, Communications, and Control Technology (I4CT).

V. K. Verma, M. Ranjan and P. Mishra, "Text mining and information professionals: Role, issues and challenges," Emerging Trends and Technologies in Libraries and Information Services (ETTLIS), 2015.


Refbacks

  • There are currently no refbacks.